Books
By Raymond C. Valentine, David L. Valentine
The physical-chemical properties of the omega-3 fatty acid DHA (docosahexaenoic acid) enable it to facilitate rapid biochemical processes in the membrane. This effect has numerous benefits, including those involved in the growth of bacteria, rapid energy generation, human vision, brain impulse, and photosynthesis, to name a few. Yet DHA also carries risks that can lead to cellular death and disease. Omega-3 Fatty Acids and the DHA Principle explores the roles of omega-3 fatty acids in cellular membranes ranging from human neurons and swimming sperm to deep sea bacteria, and develops a principle by which to assess their benefits and risks.
By Raymond C. Valentine, David L. Valentine
Studies with bacteria and other systems suggest that the omega-3 fatty acid DHA confers great benefits to neurons in maximizing both speed of neural impulses and energy efficiency. Unfortunately, studies also show that DHA’s ease of oxidation damages membrane integrity. Exploring this duality, Neurons and the DHA Principle proposes a new model for the causes of neurodegeneration, in which DHA-enriched membranes of neurons become dysfunctional and energetically wasteful, triggering the premature death of neurons.
By Raymond C. Valentine, David L. Valentine
More than 7 billion people inhabit the earth and all of them are subject to aging. This book is aimed at persons interested in a molecular explanation of how our cells age. Human Longevity: Omega-3 Fatty Acids, Bioenergetics, Molecular Biology, and Evolution is built on the proposition that we age as our mitochondria age. It suggests a revised version of Harman’s famous hypothesis featuring mitochondrial oxidative and energy stresses as the root causes of aging. Human cells are protected from the ravages of aging by a battery of defensive systems including some novel mechanisms against membrane oxidation introduced in this book. This concept is consistent with recent discoveries showing that mitochondria-targeted antioxidants prevent Huntington’s disease, Parkinson’s disease, and traumatic brain disease in animal models of neurodegeneration.
This book explores a unified theory of aging based on bioenergetics. It covers a variety of topics including an introduction to the science of human aging, the Darwinian selection of membranes enabling longevity, a revised mitochondrial membrane hypothesis of aging, and various mechanisms that protect human mitochondrial membranes, thereby enabling longevity.